HOMEWORK I (DUE DATE: 23/02/2023)

Exercise 1 (2 point). Solve the following transport equation.
(1) $u_{t}+5 u_{x}=e^{3 t}, u(x, 0)=e^{-x^{2}}$.
(2) $u_{t}-x u_{x}=0, u(x, 0)=x^{3}-1$.

Exercise 2 (2 point). Give the types and the canonical forms of the following equations, then find the solutions.
(1) $u_{x x}+5 u_{x y}+6 u_{y y}=0$.
(2) $y^{2} u_{x x}-2 y u_{x y}+u_{y y}-u_{x}+6 y=0$.

Exercise 3 (2 point).
(1) Show that the function $u=\log \left(x^{2}+y^{2}\right)$ is harmonic in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
(2) The Laplacian in the planar cartesian coordinate system is defined as

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}},
$$

rewrite the Laplacian in the planar polar coordinate system and verify (1). (Hints: Recall the transformation between the cartesian coordinate system and he planar polar coordinate system is determined by $x=r \cos \theta$, $y=r \sin \theta$.)

Exercise 4 (2 points). Let u be a real $C^{1}\left(\mathbb{R}^{2}\right)$ solution of the equation

$$
a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)=-u(x, y),
$$

in the closed unit disc $D \subset \mathbb{R}^{2}$. We assume here that a and b are given C^{1} real coefficients with

$$
a(x, y) x+b(x, y) y>0
$$

on the unit disc circle. Show that $u \equiv 0$. (Hint: One can show that u^{2} can not have a positive maximum.)

Exercise 5 (2 points).
(1) Let u be harmonic in a domain $V \subset \mathbb{R}^{2}$. Prove

$$
\left|\nabla u\left(x_{0}, y_{0}\right)\right| \leq \frac{C}{r} \max _{\partial B_{r}\left(x_{0}, y_{0}\right)}|u|
$$

where C is a constant.
(2) Let u be harmonic in \mathbb{R}^{2}, and $0<\gamma<1, C>0$ such that

$$
|u(x, y)| \leq C\left(1+|x|^{2}+|y|^{2}\right)^{\frac{\gamma}{2}}, \quad \forall(x, y) \in \mathbb{R}^{2} .
$$

Prove that u is a constant function.

